
Learning Language-Conditioned Deformable Object Manipulation with
Graph Dynamics

Yuhong Deng1,†, Kai Mo2,†, Chongkun Xia2 and Xueqian Wang2,∗

Abstract— Multi-task learning of deformable object manipu-
lation is a challenging problem in robot manipulation. Most
previous works address this problem in a goal-conditioned
way and adapt goal images to specify different tasks, which
limits the multi-task learning performance and can not gen-
eralize to new tasks. Thus, we adapt language instruction to
specify deformable object manipulation tasks and propose a
learning framework. We first design a unified Transformer-
based architecture to understand multi-modal data and output
picking and placing action. Besides, we have introduced the
visible connectivity graph to tackle nonlinear dynamics and
complex configuration of the deformable object. Both simulated
and real experiments have demonstrated that the proposed
method is effective and can generalize to unseen instructions
and tasks. Compared with the state-of-the-art method, our
method achieves higher success rates (87.2% on average) and
has a 75.6% shorter inference time. We also demonstrate
that our method performs well in real-world experiments.
Supplementary videos can be found at https://sites.
google.com/view/language-deformable.

I. INTRODUCTION

Recently, vision-based deformable object manipulation has
been widely investigated. The robot is supposed to infer
a sequence of manipulation actions from visual observa-
tions to manipulate a deformable object into a prescribed
goal configuration [1], [2]. Early works focus on learning
task-specific manipulation skills. A generic robot that can
complete different deformable object manipulation tasks is
still an open challenge. Toward this goal, some researchers
have made progress in using goal images to specify different
tasks and achieve multi-task learning [3], [4]. However, goal
images often over-defined tasks by information not related to
the task requirement, such as position, color, and image style.
Besides, the model can not deal with unseen goal images
from different domains and generalize to new tasks.

Compared with goal image, language instruction only
provide necessary information related to task requirement
and can define tasks flexibly. The prior knowledge of the
pre-trained language model can also help the robot deal with
unseen tasks. Thus, language-conditioned manipulation has
been a new trend to pave the way for the generic robot
that can complete various manipulation tasks. However, pre-
vious language-conditioned manipulation learning methods
are limited to templated manipulations like picking, placing,
and moving rigid objects [5], [6]. Language-conditioned
deformable object manipulation tasks have not been solved

† indicates the authors with equal contributions.
1 National University of Singapore, Singapore
2 Tsinghua Shenzhen International Graduate School, Shenzhen, China
∗Corresponding author

Language 
Embedding

Graph 
Embedding

Image 
Embedding

Inwardly fold the 
right sleeve.

Instruction

Depth

Graph

Picking position

False

Success Classification

Transformer
Encoder

Pick 
Decoder

Place 
Decoder

Success 
Predictor 

Placing position

fold the left sleeve 
to the center.

Inwardly fold the 
right sleeve. Fold the shirt's hem up towards the top. Task completed.

Fig. 1. Overview. We design a unified Transformer-based model and
introduce graph representation to solve language-conditioned deformable
object manipulation tasks. Our model performs well on deformable object
manipulation tasks.

for two reasons. Deformable object manipulation tasks are
often sequential multi-step tasks, which pose higher require-
ments for inference and decision-making at the intersection
of vision, language, and action. In addition, the manipulation
task is more difficult because the nonlinear dynamics [7] and
complex configurations [8] of deformable objects.

We design a unified Transformer-based model architecture
to tackle the challenge of inference and decision-making on
multi-modal data (Fig. 1). We first implement a CLIP [9]
model pre-trained on millions of image-caption pairs to
provide language embeddings, which can provide a powerful
prior for grounding language in visual scenes. As for the im-
age, we borrow the method in ViT [10] (Vision Transformer)
and get the visual embeddings by linear projection. To deal
with deformable dynamics and configurations, we establish a
visible connectivity graph [11] and get the graph embeddings
by linearly projecting representation vectors of graph nodes.
The visible connectivity graph can represent the deformable
object’s spatial structure and overcome the challenges of
partial observability and self-occlusions. After obtaining the
language, image, and graph embeddings, all embeddings
will pass through the type embedding layer [12] to achieve
multi-modal data fusion. Finally, a Transformer [13] encoder-
decoder structure is used to generate picking and placing
action possibility distribution, where positions with max
possibility will be picking and placing positions.

Since there is no existing dataset for language-conditioned
deformable object manipulation tasks, we build a dataset
including various language instructions and corresponding

ar
X

iv
:2

30
3.

01
31

0v
3 

 [
cs

.R
O

] 
 2

9 
Ja

n 
20

24

https://sites.google.com/view/language-deformable
https://sites.google.com/view/language-deformable


deformable object manipulation tasks in the simulation envi-
ronment. We then conduct simulated experiments to evaluate
our proposed method. The results demonstrate that our
method outperforms the state-of-the-art framework [5] on
multi-task learning of deformable object manipulation. Our
model can also generalize to unseen instructions and tasks
not provided in the training process. Real-world experiments
also demonstrate that our model trained in simulation can be
zero-shot transferred to the real world. The contributions of
this work are summarized as follows:

1) We propose a novel learning framework that extends
instruction-following robots’ application on sequential
multi-step deformable object manipulation;

2) We propose a unified Transformer-based model ar-
chitecture for language-conditioned deformable object
manipulation policy learning;

3) We conduct simulated and real-world experiments to
demonstrate that the proposed framework outperforms
the state-of-the-art method and can generalize to unseen
instructions and tasks.

The rest of this paper is organized as follows. The related
work is reviewed in Section II. Section III presents details of
the learning framework design. The experimental setup and
results are provided in Section IV. Section V concludes this
paper and discusses future works.

II. RELATED WORK
A. Learning for Deformable Object Manipulation

Learning-based methods have been widely used to equip
the robot with advanced deformable object manipulation
abilities. There are two main learning-based methods: Model-
based methods rely on a forward dynamics model, which
can predict the configurations of deformable objects under
a given action. The critical issue is to obtain accurate
dynamics. Learning accurate deformable dynamics from
interaction data between robots and objects has become
a solution [14], [15]. However, the generalization of the
learning model on different objects and tasks is still an
open challenge. Policy-based methods learn manipulation
policy directly from observation without a forward dynamics
model. The robot learns manipulation policy from expert
demonstrations [16] or exploratory robot interactions [17].
However, most previous policy-based methods are limited
to task-specific policy, which is inefficient in real-world
applications [18]. Some approaches learn a goal-conditioned
policy to provide a general framework for deformable object
manipulation, where the goal image specifies the task [3],
[4]. Unlike previous work, we adapt language instructions to
specify different deformable object manipulation tasks and
achieve a general learning framework.

B. Language-conditioned Robotic Manipulation policy

Language-conditioned robotic manipulation has received
growing attention recently, where the manipulation task
is specified by language instruction [19], [20]. Language
instruction specification is much easier to obtain than goal
image specification and can specify more diversified tasks

feasibly and effectively. Despite the abundant benefits of
commanding robots with natural language, such agents re-
quire deep integration of multiple data modalities (language,
vision, action). Language-Conditioned Imitation Learning
addresses this problem by mapping actions directly from
vision and language understanding in an end-to-end fash-
ion [5]. However, collecting demonstrations paired with
language annotations in the real robot is costly and time-
consuming. To tackle this data-collecting problem, Nair et
al. [21] adopt crowd-sourced annotation to obtain sufficient
datasets. Although some works improve the model’s per-
formance in more diverse languages [22], [23], previous
language-conditioned robotic manipulation approaches are
limited in rigid objects. The robot only needs to manipulate a
rigid object with low-level skills such as grasping and push-
ing. Simplifying objects and actions will limit the application
scenarios. Thus, we propose a solution framework that can
be applied to complex deformable object manipulation tasks.

III. METHODS

A. Problem Formulation

Our goal is to learn a language-conditioned deformable
object manipulation policy πθ parameterized by θ, which
can generate a sequence of manipulation action {at}(t =
0, 1, 2, ...T ) in a closed-loop manner from a language in-
struction s and the current visual observation ot:

at ← πθ(ot, s)
and ot+1 ← T (ot,at)

(1)

where T denotes the state transition. Since the deformable
object has a complex configuration, the visual observation o
is composed of two parts in our solution framework: the
top-down depth image I and the representation graph G:

at ← πθ(It,Gt, s) (2)

The action space is defined as picking and placing action:

at = {apick
t ,aplace

t } (3)

where apick
t and aplace

t denote the robot end-effector’s picking
and placing poses.

We formulate the problem as a supervised learning prob-
lem. The policy πθ is learned from expert demonstrations.

B. Model Architecture

We design a unified transformer-based model architecture
(Fig. 2) for learning language-conditioned deformable object
manipulation policy. We first leverage different modules to
embed these multi-modal data. Then an encoder-decoder
structure is used to generate picking and placing actions from
multi-modal embeddings.

Language Embedding: We employ the language encoder
in the CLIP model [9] to embed the language instruction s,
which can provide a powerful prior for grounding language
in visual scenes. Like previous works [10], [24], we prepend
an extra learnable embedding for aggregating the language
representation and add learnable position embeddings to



Depth Down-sampled 
Point Cloud

Graph

Language Embedding

Inwardly fold the right sleeve.

Linear Projection of 
Flattened Patches

Decomposition 
into Patches

Graph Embedding

1 41 31 21 11 *00 40 30 10 * *2 2 22

Transformer Encoder

Pick Decoder

Pick Point

Place Decoder

Place Heatmap Picking and Placing Action

Success Predictor 

Task Completed?

False

0 0 2 2

Extra learnable embedding for graph 

*

*

Position embedding for image

*

Modal-type embedding

Position embedding for language

Extra learnable embedding for image 

Extra learnable embedding for language 

Fig. 2. Method overview. We design a unified Transformer-based model architecture to understand the multi-modal data and output picking and placing
action with task completion prediction. We introduce a visible connectivity graph to tackle deformable objects’ complex configurations and dynamics.

retain positional information. Mathematically, the language
embedding zs is computed as follows:

zs = [Shead; CLIP(s)] + Spos (4)

where CLIP() denotes the CLIP’s language encoder, Shead

denotes the extra learnable embedding, Spos denotes the
position embeddings.

Image Embedding: Inspired by the previous work [25],
we use depth images rather than RGB images to make our
framework transferable to the real world without fine-tune or
domain randomization. We first decompose the depth image
I ∈ RH×W×1 into N non-overlapping patches. We then
flatten these 2D patches into 1D vectors xI ∈ RH×W/N .
We linearly map these vectors to align the CLIP output’s
dimension. We prepend an extra learnable embedding to ag-
gregate the image representation and add learnable position
embeddings for retaining positional information. Mathemat-
ically, The image embedding zI is computed as follows:

zI = [Ihead;WIx
1
I ;WIx

2
I ; · · · ,WIx

N
I ] + Ipos (5)

where WI denotes a learnable matrix, Ihead denotes the extra
learnable embedding, Ipos denotes the position embeddings.

Graph Embedding: We introduce a visible connectivity
graph⟨V,E⟩ to pose the inductive bias of the deformable ob-
jects’ physics to the framework [11]. The nodes V represent
the particles that compose the deformable object. Specifi-
cally, the down-sampled point cloud P = {vi}i=1,··· ,K of
the deformable obejct constructs the nodes V . There are
two types of edges E, nearby edges EC model the collision
between nodes and mesh edges EM model the deformable
object’s spatial structure. We construct nearby edges EC

based on the euclidean distance of every two nodes firstly:

EC = {eij |∥vi − vj∥2 < R} (6)

where R is a distance threshold, and vi, vj are the positions
of the nodes i, j.

We then use the pre-trained edge GNN [11] to predict the
mesh edges EM from the graph ⟨P, EC⟩. We also prepend
an extra learnable embedding that can aggregate the graph
representation. We do not add position embeddings because
Transformer without position embeddings is permutation-
invariant and a natural fit for graphs [26]. Mathematically,
The graph embedding zG is computed as follows:

zG = [Ghead;Gedge(⟨P, EC⟩)] (7)

where Ghead denotes the extra learnable embedding, Gedge()
denotes the pre-trained edge GNN.

Encoder: After obtaining the multi-modal embeddings,
we make an aggregation by concatenating these multi-modal
embeddings and adding modal-type embeddings:

z0 = [zs + Stype; zI + Itype; zG +Gtype] (8)

where Stype, Itype, Gtype are modal-type embeddings of the
language, the image and the graph, respectively.

We then input the vector z0 to a Transformer encoder
proposed in ViT [10], which has L layers:

z′l = MSA(LN(zl−1)) + zl−1 l = 1, · · · , L
zl = MLP(LN(z′l)) + z′l l = 1, · · · , L

(9)

where MSA() denotes multiheaded self-attention, LN() de-
notes LayerNorm, and MLP() denotes an MLP layer.

Pick Decoder and Place Decoder: We then design a pick
decoder and a place decoder to predict picking and placing
position from the output embeddings of the encoder layer.
The pick decoder is an MLP containing one layer, while
the place decoder consists of convolutional and upsampling
layers alternately. The pick decoder takes the graph’s node



Corner folding
"Fold the upper left corner of the fabric
towards the center."
" Create a fold from the topmost left corner of
the fabric towards the center."
"Make a crease at the bottom left-hand corner
of the cloth and fold it inwards. "
"Fold the leftmost bottom corner of the fabric
towards the midpoint."
"Bring the lower right corner of the fabric to
the middle with a fold."

Triangle folding
"Fold the topmost left corner of the fabric to
its diagonal corner."
"Fold the leftmost bottom corner of the fabric
towards the upper right."
"Bring the left lower corner of the cloth to the
top right-hand corner. "
"Take the corner at the lower left of the cloth
and fold it to the corner on the opposite side. "
"Create a triangle by folding the right lower
corner of the cloth to the top left-hand corner."

Half folding
"Crease the cloth in half from right-hand to
left hand."
"Fold the material in half, symmetrically
starting from the left."
"Halve the cloth by folding it from top to
bottom."
"Fold the cloth in half, starting from the left
side and meeting the right."
"Fold the material in half, symmetrically
starting from the bottom."

T-shirt folding
"Bend the right-hand sleeve towards the
inside."
"Fold the right sleeve towards the midpoint of
the shirt."
"Bring the bottom of the T-shirt up towards
the neckline."
"Fold the right-hand sleeve towards the
midpoint of the shirt."
"Fold the left-hand sleeve inward to the
halfway point."

Trousers folding
"Make a fold in the Trousers, starting from the
left and ending at the right."
"Fold the Trousers in half lengthwise, starting
from the waistband."
"Create a fold in the Trousers from the
waistband to the hem."
"Fold the Trousers in half vertically, beginning
at the upper edge."
"Create a fold in the Trousers, going from 
right to left."

Fig. 3. Some examples of language-conditioned deformable object manipulation Tasks. Seen instructions, unseen instructions, unseen tasks are
marked in black, grey and red, respectively.

embeddings as input and outputs the probability distribution
Qpick ∈ RK , which represent the probability of each point
in the down-sampled point cloud P being a picking position.
The place encoder takes the image’s patch embeddings as
input and outputs a pixel-wise heatmap Qplace ∈ RH×W ,
which represent the probability of each pixel in the image
being a placing position. The optimal picking actionapick and
the optimal placing action aplace are computed as follows:

apick = argmaxaQpick(a)

aplace = argmaxaQplace(a)
(10)

Success Classifier: Most previous language-conditioned
manipulation learning algorithm can not estimate whether a
task has been completed [5], [20], [22], which is not practical
in real-world employment. Thus, we design a successful
classifier to estimate task completion, making our framework
more autonomous. The success classifier is an MLP that
contains two layers, which can perform binary classification
to indicate task completion. The success classifier’s input is
the concatenation of the output embeddings corresponding
to three extra embeddings Shead, Ihead and Ghead.

C. Implementation Details:
We use behavioral cloning to train a multi-task model.

The training data is collected in the SoftGym suite [27].
The 3D models of deformable objects are sampled from
CLOTH3D dataset [28]. In SoftGym, the deformable objects
are modeled as particles whose ground truth positions and
velocities can be accessed. Thus, we can easily collect expert
demonstrations using a oracle demonstrator. The object’s
initial configurations (size, pose, etc.) are randomized during
data collection. Each expert demonstration ζ is composed
of the language instruction s, the observation-action pair
(ot,at) with t = 1, 2, · · · , T :

ζ = {l, (o1,a1), (o2,a2), · · · , (oT ,aT )} (11)

For model training, we train the success classifier and other
modules separately. We first freeze the CLIP encoder and the
edge GNN and then train the modules except for the clas-
sifier with the binary cross-entropy (BCE) loss between the
predicted Qpick, Qplace and the ground truth Qgt

pick, Q
gt
place:

Laction = BCE(Qpick,Qgt
pick) + BCE(Qplace,Qgt

place) (12)

Finally, We freeze the trained modules and train the success
classifier with the BCE loss.

IV. EXPERIMENTS

This section presents simulated and real-world experi-
ments to answer the following questions: 1) How well does
our framework perform on multi-task learning of deformable
object manipulation compared with the baseline methods?
2) What role does the visible connectivity graph play in
our algorithm design? 3) How well does our framework
generalize to unseen instructions and tasks? and 4) How
well does our framework perform on real-world language-
conditioned deformable object manipulation tasks?

A. Simulation Experiments Setup

All simulation experiments are conducted in the SoftGym
suite [27]. The robot is provided with language instruction
and is supposed to complete the instruction with only current
visual observation inputs. We evaluate the performance of
our framework with 5 types of language-conditioned manip-
ulation tasks. Fig 3 shows some examples, and TABLE II
shows the number of instructions associated with each type
of task. There are various instructions and tasks in the sim-
ulation experiments. The testing instructions can be divided
into three parts: seen instructions, unseen instructions, and
unseen tasks. Seen instructions means instructions seen in
the training process. The manipulation tasks that unseen
instructions and seen instructions specify are the same. The
difference is the language description. Unseen instructions
can not be seen in the training process. Unseen tasks mean
new tasks not seen in training. Unseen tasks require new
manipulation skills that the model has not learned in training.
For example, for corner folding, folding from the bottom
left, top right, and top left can be seen in training; folding
from the bottom right is an unseen task. For T-shirt folding,
folding the right sleeve can be seen; folding the left sleeve
is an unseen task.

B. Simulation Experiment Results

We compare the performance of our methods with two
baseline methods: Foldsformer [25] is a state-of-the-art
method that adapts a sequence of sub-goal images to specify
the task. Foldsformer is provided with sub-goal images rather



TABLE I
SIMULATION EXPERIMENT RESULTS. THE AVERAGE SUCCESS RATES (%) ON TESTING TASKS (SEEN INSTRUCTIONS, UNSEEN INSTRUCTIONS AND

UNSEEN TASKS). MODELS ARE TRAINED WITH 100 AND 1000 DEMONSTRATIONS PER TASK. THE BEST PERFORMANCE IS IN BOLD.

Method
corner folding

(seen instructions)
triangle folding

(seen instructions)
half folding

(seen instructions)
T-shirt folding

(seen instructions)
Trousers folding

(seen instructions)

100 1000 100 1000 100 1000 100 1000 100 1000

Foldsformer [25] 80.0 90.0 52.0 68.0 16.0 26.0 18.0 24.0 8.0 20.0
CLIPORT [5] 78.0 86.0 76.0 78.0 50.0 56.0 54.0 74.0 38.0 46.0
ours (w/o graph) 100,0 100.0 66.0 84.0 44.0 56.0 78.0 78.0 64.0 88.0
ours (full method) 100.0 100.0 72.0 92.0 52.0 74.0 86.0 84.0 74.0 86.0

Method
corner folding

(unseen instructions)
triangle folding

(unseen instructions)
half folding

(unseen instructions)
T-shirt folding

(unseen instructions)
Trousers folding

(unseen instructions)

100 1000 100 1000 100 1000 100 1000 100 1000

CLIPORT [5] 80.0 90.0 76.0 74.0 38.0 50.0 56.0 70.0 32.0 38.0
ours (w/o graph) 100.0 100.0 72.0 78.0 36.0 60.0 86.0 80.0 54.0 84.0
ours (full method) 96.0 100.0 80.0 92.0 40.0 68.0 80.0 80.0 74.0 92.0

Method
corner folding
(unseen tasks)

triangle folding
(unseen tasks)

half folding
(unseen tasks)

T-shirt folding
(unseen tasks)

Trousers folding
(unseen tasks)

100 1000 100 1000 100 1000 100 1000 100 1000

CLIPORT [5] 70.0 76.0 70.0 74.0 0.0 0.0 22.0 46.0 0.0 8.0
ours (w/o graph) 74.0 80.0 50.0 80.0 0.0 2.0 28.0 76.0 10.0 14.0
ours (full method) 36.0 78.0 76.0 88.0 0.0 0.0 42.0 80.0 0.0 32.0

TABLE II
TESTING INSTRUCTIONS IN SIMULATION EXPERIMENTS.

Task seen instructions unseen instructions unseen tasks

corner folding 192 48 64
triangle folding 192 48 64
half folding 192 48 64
T-shirt folding 96 24 48
Trousers folding 96 24 48
Total 768 192 288

than language instruction in each task. CLIPORT [5] repre-
sents the typical network for language-conditioned manipula-
tion learning. It relies on a two-stream architecture and uses
pre-trained vision-language models for language-conditioned
manipulation policies. Besides, we set an ablation study to
evaluate the role of the graph in our framework. Ours (w/o
graph) has the same backbone architecture as the proposed
algorithm. The only difference is that we did not provide it
with graph information.

We first evaluate the success rate on seen instructions,
unseen instructions, and unseen tasks (each type of task has
50 task instances). We train all models with 100 and 1000
demonstrations separately. The success metric is the mean
particle position error between the cloth states achieved by
the policy and an oracle demonstrator. We define a task as
a success if the mean particle position error is less than
0.0125m (the diameter of a particle in SoftGym). The results
are shown in TABLE I.

Overall, Foldsformer performs worst, illustrating the mer-
its of language specification in multi-task learning of robot
manipulation. Compared with a demonstration of an image
sequence, natural language can provide sufficient cues of

TABLE III
MODEL CAPACITY. WE COMPARE MODEL PARAMETERS, FLOPS, AND

INFERENCE TIME OF DIFFERENT MODELS.THE BEST PERFORMANCE IS

IN BOLD.

Method Params(M) FLOPS(G) Inference Time (ms)

Foldsformer [25] 11.6 24.58 19
CLIPORT [5] 423.19 384.37 131
ours (w/o graph) 51.03 19.81 15
ours (full method) 53.55 34.38 32

task requirements without over-defining the task by the
object’s texture, position, and size. Besides, a demonstration
of an image sequence could only capture one instance of
success [29].

Ours (w/o graph) generally outperforms CLIPORT,
demonstrating that the proposed model architecture effec-
tively learns language-conditioned manipulation policy. We
use a unified Transformer-based model architecture to deal
with multi-modal input and output picking and placing
action. Such model architecture outperforms the state-of-the-
art method.

By introducing a visible connectivity graph, ours (full
method) outperforms all baseline methods, especially on
tasks with more steps and complex deformable objects (such
as T-shirt and trousers folding). In these more complicated
tasks, the manipulation process is more likely to cause
irregular self-occlusion and partial observation. The visible
connectivity graph can help the robot accurately capture
deformable dynamics and configurations.

In addition, our model is also more data-efficient. In
TABLE I, the success rates of our model trained on 100
demonstrations are higher than those of baseline models



Align the right sleeve to 
the center

Bring the left sleeve to 
the center seam Turn up the bottom of the T-shirt towards the top

Fold the upper right 
corner of the fabric to 

its diagonal corner

Fold the lower right 
corner of the fabric 

towards the upper left
T-shirt folding Triangle foldingEnd End

Make a crease at the 
leftmost top corner of 

the fabric

Fold the top right-hand
corner of the cloth 
towards the middle

Bring the right lower 
corner of the fabric to 
the center with a fold

Create a fold from the 
lower left corner of the 

fabric towards the center

Fold the leftmost top
point of the fabric to its 

opposite vertex

Bring the left lower 
corner of the cloth to 
the right upper corner

Corner folding Triangle foldingEnd End

Bend the material in half, beginning from the left side
Halve the cloth by 

folding it from top to 
bottom

Create a fold in the 
Trousers from the 

waistband to the hem
Half folding Trousers folding Create a fold in the Trousers, going from rightmost

to leftmostEnd End

Fig. 4. Real World Experiments. Our model performs well in language-conditioned deformable object manipulation tasks and can generalize to unseen
tasks in the real world. Unseen tasks are marked in red.

trained on 1000 demonstrations on almost all involved tasks.
The experiment results also show that our model can be

general to unseen instructions and even unseen tasks. Our
model can understand unseen instructions with the prior
knowledge of the pre-trained language model. More impor-
tantly, our model learns to ground the spatial displacement
hidden in the instruction in the visual image instead of
just memorizing some picking and placing positions, which
makes the model general to unseen tasks such as folding
from different directions and folding different parts. We also
found that it is hard for the model to generalize to unseen
tasks such as half folding, where the manipulation is more
likely to lead to an arbitrary state. In these tasks, the model
must see enough arbitrary visual features in the training.

Besides, our model is much lighter than the baseline
method. We calculate different models’ FLOPs (Floating
Point Operations), model parameters, and inference times.
The results are shown in TABLE. III. Overall, Foldsformer
is the lightest because it does not deal with multi-modal
data. Ours (full method) and ours (w/o graph) are dramat-
ically lighter in model FLOPs, parameters, and inference
time than CLIPORT, which is attributed to the proposed
unified transformer-based architecture. It can also be seen
that improving model performance by introducing graph
representation is feasible in terms of model efficiency.

C. Real World Experiments

As described previously, we use depth images rather than
RGB images to make our framework able to be trans-
ferred to the real world directly. We evaluate the sim-to-
real performance of our framework on a kinova robot with
a standard two-finger Robotiq gripper. A Realsense RGB-D
camera mounted on the robot’s end-effector is used to capture
visual observations. The deformable object (towel, T-shirt, or
trousers) is placed on the platform in front of the robot. We
evaluate the success rate of our model on 5 types of real-
world language-conditioned manipulation tasks. We define
a task as success according to the Mean Intersection Union

TABLE IV
REAL EXPERIMENT RESULTS. THE AVERAGE SUCCESS RATE (%) ON

TESTING TASKS.

Task success rate(%)

corner folding 80.0
triangle folding 70.0
half folding 40.0
T-shirt folding 60.0
Trousers folding 40.0

(MIoU) between the deformable object masks achieved by
our model and the human experts. If the MIou exceeds 0.9,
the task is successful. Table. IV shows the results. Real
experiments’ success rate is close to simulation experiments’
success rate.

Fig. 4 shows some examples in our real-world experi-
ments. Our model can complete both seen and unseen tasks
in real-world experiments. A complete video recording of
these experiments can be found on our project website.

V. CONCLUSION

In this paper, we propose a novel framework for language-
conditioned deformable manipulation policy learning. We
design a unified Transformer-based model architecture to
deal with multi-modal data and output precise picking and
placing action. Besides, we construct a visible connective
graph to represent the spatial structure of the deformable
object. Extensive experiments have been conducted to verify
the proposed model architecture’s performance, proving that
our framework can improve the multi-task learning perfor-
mance on deformable object manipulation and generalize
to unseen instructions and unseen tasks. Furthermore, our
framework performs well on real-world experiments. For
future work, we will explore the method to deal with
arbitrary configurations during manipulation and improve
the proposed framework’s performance on more complicated
unseen tasks.



REFERENCES

[1] B. Thach, B. Y. Cho, A. Kuntz, and T. Hermans, “learning visual
shape control of novel 3d deformable objects from partial-view point
clouds,” in 2022 International Conference on Robotics and Automation
(ICRA), pp. 8274–8281, IEEE, 2022.

[2] T. Weng, S. M. Bajracharya, Y. Wang, K. Agrawal, and D. Held, “Fab-
ricflownet: Bimanual cloth manipulation with a flow-based policy,” in
Conference on Robot Learning, pp. 192–202, PMLR, 2022.

[3] D. Seita, P. Florence, J. Tompson, E. Coumans, V. Sindhwani,
K. Goldberg, and A. Zeng, “Learning to rearrange deformable cables,
fabrics, and bags with goal-conditioned transporter networks,” in 2021
IEEE International Conference on Robotics and Automation (ICRA),
pp. 4568–4575, IEEE, 2021.

[4] R. Lee, D. Ward, V. Dasagi, A. Cosgun, J. Leitner, and P. Corke,
“Learning arbitrary-goal fabric folding with one hour of real robot
experience,” in Conference on Robot Learning, pp. 2317–2327, PMLR,
2021.

[5] M. Shridhar, L. Manuelli, and D. Fox, “Cliport: What and where
pathways for robotic manipulation,” in Conference on Robot Learning,
pp. 894–906, PMLR, 2022.

[6] A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho,
J. Ibarz, A. Irpan, E. Jang, R. Julian, et al., “Do as i can, not as i say:
Grounding language in robotic affordances,” in 6th Annual Conference
on Robot Learning, 2022.

[7] S. Zimmermann, R. Poranne, and S. Coros, “Dynamic manipulation
of deformable objects with implicit integration,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 4209–4216, 2021.

[8] J. Zhu, A. Cherubini, C. Dune, D. Navarro-Alarcon, F. Alambeigi,
D. Berenson, F. Ficuciello, K. Harada, J. Kober, X. Li, et al., “Chal-
lenges and outlook in robotic manipulation of deformable objects,”
IEEE Robotics & Automation Magazine, vol. 29, no. 3, pp. 67–77,
2022.

[9] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, et al., “Learning transferable
visual models from natural language supervision,” in International
conference on machine learning, pp. 8748–8763, PMLR, 2021.

[10] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[11] X. Lin, Y. Wang, Z. Huang, and D. Held, “Learning visible connectiv-
ity dynamics for cloth smoothing,” in Conference on Robot Learning,
pp. 256–266, PMLR, 2022.

[12] W. Kim, B. Son, and I. Kim, “Vilt: Vision-and-language transformer
without convolution or region supervision,” in International Confer-
ence on Machine Learning, pp. 5583–5594, PMLR, 2021.

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[14] W. Yan, A. Vangipuram, P. Abbeel, and L. Pinto, “Learning predictive
representations for deformable objects using contrastive estimation,”
in Conference on Robot Learning, pp. 564–574, PMLR, 2021.

[15] X. Ma, D. Hsu, and W. S. Lee, “Learning latent graph dynamics
for visual manipulation of deformable objects,” in 2022 International
Conference on Robotics and Automation (ICRA), pp. 8266–8273,
IEEE, 2022.

[16] A. Nair, D. Chen, P. Agrawal, P. Isola, P. Abbeel, J. Malik, and
S. Levine, “Combining self-supervised learning and imitation for
vision-based rope manipulation,” in 2017 IEEE international confer-
ence on robotics and automation (ICRA), pp. 2146–2153, IEEE, 2017.

[17] J. Matas, S. James, and A. J. Davison, “Sim-to-real reinforcement
learning for deformable object manipulation,” in Conference on Robot
Learning, pp. 734–743, PMLR, 2018.

[18] Y. Wu, W. Yan, T. Kurutach, L. Pinto, and P. Abbeel, “Learning to
manipulate deformable objects without demonstrations,” in Robotics:
Science and Systems, 2020.

[19] E. Stengel-Eskin, A. Hundt, Z. He, A. Murali, N. Gopalan, M. Gom-
bolay, and G. Hager, “Guiding multi-step rearrangement tasks with
natural language instructions,” in Conference on Robot Learning,
pp. 1486–1501, PMLR, 2022.

[20] M. Shridhar, L. Manuelli, and D. Fox, “Perceiver-actor: A
multi-task transformer for robotic manipulation,” arXiv preprint
arXiv:2209.05451, 2022.

[21] S. Nair, E. Mitchell, K. Chen, S. Savarese, C. Finn, et al., “Learning
language-conditioned robot behavior from offline data and crowd-
sourced annotation,” in Conference on Robot Learning, pp. 1303–
1315, PMLR, 2022.

[22] P.-L. Guhur, S. Chen, R. Garcia, M. Tapaswi, I. Laptev, and C. Schmid,
“Instruction-driven history-aware policies for robotic manipulations,”
arXiv preprint arXiv:2209.04899, 2022.

[23] O. Mees, L. Hermann, E. Rosete-Beas, and W. Burgard, “Calvin: A
benchmark for language-conditioned policy learning for long-horizon
robot manipulation tasks,” IEEE Robotics and Automation Letters,
2022.

[24] W. Kim, B. Son, and I. Kim, “Vilt: Vision-and-language transformer
without convolution or region supervision,” in International Confer-
ence on Machine Learning, pp. 5583–5594, PMLR, 2021.

[25] K. Mo, C. Xia, X. Wang, Y. Deng, X. Gao, and B. Liang, “Folds-
former: Learning sequential multi-step cloth manipulation with space-
time attention,” IEEE Robotics and Automation Letters, vol. 8, no. 2,
pp. 760–767, 2023.

[26] Z. Wu, P. Jain, M. Wright, A. Mirhoseini, J. E. Gonzalez, and I. Stoica,
“Representing long-range context for graph neural networks with
global attention,” Advances in Neural Information Processing Systems,
vol. 34, pp. 13266–13279, 2021.

[27] X. Lin, Y. Wang, J. Olkin, and D. Held, “Softgym: Benchmarking
deep reinforcement learning for deformable object manipulation,” in
Conference on Robot Learning, pp. 432–448, PMLR, 2021.

[28] H. Bertiche, M. Madadi, and S. Escalera, “Cloth3d: clothed 3d hu-
mans,” in Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XX 16, pp. 344–
359, Springer, 2020.

[29] S. Nair, E. Mitchell, K. Chen, S. Savarese, C. Finn, et al., “Learning
language-conditioned robot behavior from offline data and crowd-
sourced annotation,” in Conference on Robot Learning, pp. 1303–
1315, PMLR, 2022.


	INTRODUCTION
	RELATED WORK
	Learning for Deformable Object Manipulation
	Language-conditioned Robotic Manipulation policy

	Methods
	Problem Formulation
	Model Architecture
	Implementation Details:

	Experiments
	Simulation Experiments Setup
	Simulation Experiment Results
	Real World Experiments

	Conclusion
	References

